You can use LlamaIndex with Upstash Vector to perform Retrieval-Augmented Generation (RAG). LlamaIndex is a powerful tool that integrates seamlessly with vector databases like Upstash Vector, enabling advanced query and response capabilities.
Install
pip install llama-index upstash-vector llama-index-vector-stores-upstash python-dotenv
Setup
First, create a Vector Index in the Upstash Console. Configure the index with:
- Dimensions: 1536
- Distance Metric: Cosine
Once the index is created, copy the UPSTASH_VECTOR_REST_URL
and UPSTASH_VECTOR_REST_TOKEN
and add them to your .env
file along with your OpenAI API key:
UPSTASH_VECTOR_REST_URL=your_upstash_url
UPSTASH_VECTOR_REST_TOKEN=your_upstash_token
OPENAI_API_KEY=your_openai_api_key
Usage
Here’s how you can integrate LlamaIndex with Upstash Vector:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.upstash import UpstashVectorStore
from llama_index.core import StorageContext
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set OpenAI API key
openai.api_key = os.environ["OPENAI_API_KEY"]
# Initialize Upstash Vector store
upstash_vector_store = UpstashVectorStore(
url=os.environ["UPSTASH_VECTOR_REST_URL"],
token=os.environ["UPSTASH_VECTOR_REST_TOKEN"],
)
# Load documents using SimpleDirectoryReader
documents = SimpleDirectoryReader("./documents/").load_data()
# Create a storage context and initialize the index
storage_context = StorageContext.from_defaults(vector_store=upstash_vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
Querying
Once the index is created, you can query it to retrieve and generate responses based on document content.
# Initialize the query engine
query_engine = index.as_query_engine()
# Perform queries
response_1 = query_engine.query("What is global warming?")
print(response_1)
response_2 = query_engine.query("How can we reduce our carbon footprint?")
print(response_2)
Notes